Crohn's and Colitis
► Gastroenterological Field:
 
- Crohn’s Disease- For patients that aren’t responding to conventional treatment options well enough.
 
- Colitis- In special cases, it will be given to patients with ulcerative colitis that aren’t responding to conventional treatment options.
Research
 
Cannabis Induces a Clinical Response in Patients With Crohn's Disease: A Prospective Placebo-Controlled Study
 
Timna Naftaliemail, Lihi Bar-Lev Schleider, Iris Dotan, Ephraim Philip Lansky, Fabiana Sklerovsky Benjaminov, Fred Meir Konikoff
Published Online: May 06, 2013
 
Background & Aims
The marijuana plant Cannabis sativa has been reported to produce beneficial effects for patients with inflammatory bowel diseases, but this has not been investigated in controlled trials. We performed a prospective trial to determine whether cannabis can induce remission in patients with Crohn's disease.
 
Methods
We studied 21 patients (mean age, 40 ± 14 y; 13 men) with Crohn's Disease Activity Index (CDAI) scores greater than 200 who did not respond to therapy with steroids, immunomodulators, or anti–tumor necrosis factor-α agents. Patients were assigned randomly to groups given cannabis, twice daily, in the form of cigarettes containing 115 mg of Δ9-tetrahydrocannabinol (THC) or placebo containing cannabis flowers from which the THC had been extracted. Disease activity and laboratory tests were assessed during 8 weeks of treatment and 2 weeks thereafter.
 
Results
Complete remission (CDAI score, <150) was achieved by 5 of 11 subjects in the cannabis group (45%) and 1 of 10 in the placebo group (10%; P = .43). A clinical response (decrease in CDAI score of >100) was observed in 10 of 11 subjects in the cannabis group (90%; from 330 ± 105 to 152 ± 109) and 4 of 10 in the placebo group (40%; from 373 ± 94 to 306 ± 143; P = .028). Three patients in the cannabis group were weaned from steroid dependency. Subjects receiving cannabis reported improved appetite and sleep, with no significant side effects.
 
Conclusions
Although the primary end point of the study (induction of remission) was not achieved, a short course (8 weeks) of THC-rich cannabis produced significant clinical, steroid-free benefits to 10 of 11 patients with active Crohn's disease, compared with placebo, without side effects. Further studies, with larger patient
groups and a nonsmoking mode of intake, are warranted. ClinicalTrials.gov, NCT01040910.
 
 


Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa, is protective in a murine model of colitis
 
Mol Med. 2009 Nov;87(11):1111-21. Epub 2009 Aug 20
Borrelli F, Aviello G, Romano B, Orlando P, Capasso R, Maiello F, Guadagno F, Petrosino S, Capasso F, Di Marzo V, Izzo AA
Department of Experimental Pharmacology, University of Naples Federico II, via D Montesano 49, 80131 Naples, Italy
 
Abstract
Inflammatory bowel disease affects millions of individuals; nevertheless, pharmacological treatment is disappointingly unsatisfactory. Cannabidiol, a safe and non-psychotropic ingredient of marijuana, exerts pharmacological effects (e.g., antioxidant) and mechanisms (e.g., inhibition of endocannabinoids enzymatic degradation) potentially beneficial for the inflamed gut. Thus, we investigated the effect of cannabidiol in a murine model of colitis. Colitis was induced in mice by intracolonic administration of dinitrobenzene sulfonic acid. Inflammation was assessed both macroscopically and histologically. In the inflamed colon, cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) were evaluated by Western blot, interleukin-1beta and interleukin-10 by ELISA, and endocannabinoids by isotope dilution liquid chromatography-mass spectrometry. Human colon adenocarcinoma (Caco-2) cells were used to evaluate the effect of cannabidiol on oxidative stress. Cannabidiol reduced colon injury, inducible iNOS (but not cyclooxygenase-2) expression, and interleukin-1beta, interleukin-10, and endocannabinoid changes associated with 2,4,6-dinitrobenzene sulfonic acid administration. In Caco-2 cells, cannabidiol reduced reactive oxygen species production and lipid peroxidation. In conclusion, cannabidiol, a likely safe compound, prevents experimental colitis in mice
 

 
The effects of Delta-tetrahydrocannabinol and cannabidiol alone and in combination on damage,inflammation and in vitro motility disturbances in rat colitis
 
Jamontt JM, Molleman A, Pertwee RG, Parsons ME
School of Life Sciences, University of Hertfordshire, Hatfield, Hertfordshire, UK. [email protected]
 
Abstract
 
BACKGROUND AND PURPOSE
Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief. Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Delta(9)-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders. Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis
 
EXPERIMENTAL APPROACH
The 2,4,6-trinitrobenzene sulphonic acid (TNBS) model of acute colitis in rats was used to assess damage, inflammation (myeloperoxidase activity) and in vitro colonic motility. Sulphasalazine was used as an active control drug
 
KEY RESULTS
Sulphasalazine, THC and CBD proved beneficial in this model of colitis with the dose-response relationship for the phytocannabinoids showing a bell-shaped pattern on the majority of parameters (optimal THC and CBD dose, 10 mg.kg(-1)). THC was the most effective drug. The effects of these phytocannabinoids were additive, and CBD increased some effects of an ineffective THC dose to the level of an effective one. THC alone and in combination with CBD protected cholinergic nerves whereas sulphasalazine did not
 
CONCLUSIONS AND IMPLICATIONS
In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects